156 research outputs found

    Probabilistic Programming Concepts

    Full text link
    A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been developed since more than 20 years

    Finding relational redescriptions

    Get PDF
    We introduce relational redescription mining, that is, the task of finding two structurally different patterns that describe nearly the same set of object pairs in a relational dataset. By extending redescription mining beyond propositional and real-valued attributes, it provides a powerful tool to match different relational descriptions of the same concept. We propose an alternating scheme for solving this problem. Its core consists of a novel relational query miner that efficiently identifies discriminative connection patterns between pairs of objects. Compared to a baseline Inductive Logic Programming (ILP) approach, our query miner is able to mine more complex queries, much faster. We performed extensive experiments on three real world relational datasets, and present examples of redescriptions found, exhibiting the power of the method to expressively capture relations present in these networks

    Probabilistic Logic Programming with Beta-Distributed Random Variables

    Full text link
    We enable aProbLog---a probabilistic logical programming approach---to reason in presence of uncertain probabilities represented as Beta-distributed random variables. We achieve the same performance of state-of-the-art algorithms for highly specified and engineered domains, while simultaneously we maintain the flexibility offered by aProbLog in handling complex relational domains. Our motivation is that faithfully capturing the distribution of probabilities is necessary to compute an expected utility for effective decision making under uncertainty: unfortunately, these probability distributions can be highly uncertain due to sparse data. To understand and accurately manipulate such probability distributions we need a well-defined theoretical framework that is provided by the Beta distribution, which specifies a distribution of probabilities representing all the possible values of a probability when the exact value is unknown.Comment: Accepted for presentation at AAAI 201

    Subgraph Pattern Matching over Uncertain Graphs with Identity Linkage Uncertainty

    Get PDF
    There is a growing need for methods which can capture uncertainties and answer queries over graph-structured data. Two common types of uncertainty are uncertainty over the attribute values of nodes and uncertainty over the existence of edges. In this paper, we combine those with identity uncertainty. Identity uncertainty represents uncertainty over the mapping from objects mentioned in the data, or references, to the underlying real-world entities. We propose the notion of a probabilistic entity graph (PEG), a probabilistic graph model that defines a distribution over possible graphs at the entity level. The model takes into account node attribute uncertainty, edge existence uncertainty, and identity uncertainty, and thus enables us to systematically reason about all three types of uncertainties in a uniform manner. We introduce a general framework for constructing a PEG given uncertain data at the reference level and develop highly efficient algorithms to answer subgraph pattern matching queries in this setting. Our algorithms are based on two novel ideas: context-aware path indexing and reduction by join-candidates, which drastically reduce the query search space. A comprehensive experimental evaluation shows that our approach outperforms baseline implementations by orders of magnitude

    DNF Sampling for ProbLog Inference

    Full text link
    Inference in probabilistic logic languages such as ProbLog, an extension of Prolog with probabilistic facts, is often based on a reduction to a propositional formula in DNF. Calculating the probability of such a formula involves the disjoint-sum-problem, which is computationally hard. In this work we introduce a new approximation method for ProbLog inference which exploits the DNF to focus sampling. While this DNF sampling technique has been applied to a variety of tasks before, to the best of our knowledge it has not been used for inference in probabilistic logic systems. The paper also presents an experimental comparison with another sampling based inference method previously introduced for ProbLog.Comment: Online proceedings of the Joint Workshop on Implementation of Constraint Logic Programming Systems and Logic-based Methods in Programming Environments (CICLOPS-WLPE 2010), Edinburgh, Scotland, U.K., July 15, 201

    Beyond the grounding bottleneck: Datalog techniques for inference in probabilistic logic programs

    Get PDF
    State-of-the-art inference approaches in probabilistic logic programming typically start by computing the relevant ground program with respect to the queries of interest, and then use this program for probabilistic inference using knowledge compilation and weighted model counting. We propose an alternative approach that uses efficient Datalog techniques to integrate knowledge compilation with forward reasoning with a non-ground program. This effectively eliminates the grounding bottleneck that so far has prohibited the application of probabilistic logic programming in query answering scenarios over knowledge graphs, while also providing fast approximations on classical benchmarks in the field

    Introduction to the special issue on probability, logic and learning

    Get PDF
    Recently, the combination of probability, logic and learning has received considerable attention in the artificial intelligence and machine learning communities; see e.g. Getoor and Taskar (2007); De Raedt et al. (2008). Computational logic often plays a major role in these developments since it forms the theoretical backbone for much of the work in probabilistic programming and logical and relational learning. Contemporary work in this area is often application- and experiment-driven, but is also concerned with the theoretical foundations of formalisms and inference procedures and with advanced implementation technology that scales well

    Algebraic model counting

    Get PDF
    Weighted model counting (WMC) is a well-known inference task on knowledge bases, and the basis for some of the most efficient techniques for probabilistic inference in graphical models. We introduce algebraic model counting (AMC), a generalization of WMC to a semiring structure that provides a unified view on a range of tasks and existing results. We show that AMC generalizes many well-known tasks in a variety of domains such as probabilistic inference, soft constraints and network and database analysis. Furthermore, we investigate AMC from a knowledge compilation perspective and show that all AMC tasks can be evaluated using sd-DNNF circuits, which are strictly more succinct, and thus more efficient to evaluate, than direct representations of sets of models. We identify further characteristics of AMC instances that allow for evaluation on even more succinct circuits
    corecore